
J .  Fluid Mech. (1987), vol. 177, p p .  187-206 
Printed in Great Britain 

187 

Density currents or density wedges : boundary-layer 
influence and control methods 

By GERHARD H. JIRKA AND MASAMITSU ARITA 
DeFrees Hydraulics Laboratory, Cornell University, Ithaca, NY 14853, USA 

(Received 14 October 1985 and in revised form 27 August 1986) 

Density currents and density wedges are two observed manifestations of interactions 
between an ambient flow and a horizontal buoyant intrusion. In a density current 
the buoyant pressure force is primarily balanced by the local form drag of the current 
head which has a blunt shape and abrupt depth change. In a density wedge a 
distributed interfacial drag is the primary balancing force, leading to a stretched-out 
shape and long-distance intrusions. A perturbation analysis of the approach flow to 
the inclined front of a density current shows that slight momentum changes caused 
by viscous effects in the ambient flow determine which of these two flow types is 
established. In a uniform ambient channel flow, any momentum deficit relative to 
the inviscid case will lead to a local flattening of the front and ultimate breakdown 
into a density wedge. On the other hand, a momentum surplus will support a 
steady-state density current. Several exploratory experiments on control of the 
ambient boundary layer through local non-uniformities were performed with the 
objective of achieving stable density-current forms with limited intrusion lengths. 
These methods include a small step, a barrier and suction and are applied for 
intrusions at either the bottom or surface of an ambient water flow. In  all cases, good 
agreement is found with the force balances predicted by Benjamin's (1968) theory 
and its extension by Britter & Simpson (1978) which accounts for entrainment in the 
wake zone of the head. 

1. Introduction 
A solid body placed in real fluid flow experiences a drag force that may be separated 

into a skin-friction component due to tangential stresses and a pressure (form) 
component due to normal stresses. Which drag component dominates in a particular 
instance depends on the body shape and its associated boundary-layer behaviour. 
Generally, long slender bodies are dominated by skin-friction drag, while short blunt 
bodies are characterized by early boundary layer separation and a wide wake zone, 
and are dominated by large form drag. Moreover, engineers have long learned to 
influence - for a given body shape -the type and magnitude of the drag through 
different methods of boundary-layer control : artificial roughness, vortex generators, 
boundary-layer suction, surface cooling are but a few examples. With any of these 
methods, a reasonably small local flow manipulation can have profound effects on 
the overall flow. 

Several analogies can be drawn between the above fluid-solid interaction and the 
fluid-fluid interaction between a horizontal intrusion of a buoyant fluid and an 
oncoming flow. Two drastically different types of intrusion are observed experi- 
mentally (see figure 1)  : the density current and the density wedge. 

In a density current (also called gravity current) the intrusion has a blunt body 
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FIGURE 1.  Steady-state shapes of intrusions of a dense fluid layer with buoyancy g‘ and initial 
thickness h into an ambient flow with relative velocity U (vertical average) and depth H .  (a) Density 
current, ( b )  density wedge. 

shape with an abrupt depth change and a distinct leading ‘head’. The primary force 
balancing the buoyant driving force is given by a pressure drag due to the relative 
motion of the ambient flow around the head shape. This situation was first analysed 
using a bulk momentum equation by Benjamin (1968), with a later refinement by 
Britter & Simpson (1978) to account for the mixing in the wake zone. Usually density 
currents are observed in unsteady form advancing relative to a fixed reference (i.e. 
the ambient fluid is stagnant while the density current intrudes). However, Britter 
& Simpson were first to succeed in generating study density currents by using a 
moving belt bottom to eliminate the shear in the ambient flow. 

In contrast, a density wedge exhibits an elongated body shape with a gradual depth 
change along the wedge length. Length-to-depth ratios of 100 in the laboratory and 
of lo00 in estuarine saline wedges are common. The major force balancing the 
buoyant intrusion force is a distributed ‘skin-friction drag ’, i.e. the interfacial shear 
stress. The one-dimensional momentum equation is now employed in its differential 
form which, upon integration, yields a solution for the wedge shape and length. This 
solution was first given by Schijf & Schonfeld (1953) (see also Turner 1973) using a 
quadratic drag law for the interfacial shear stress. Improved solutions that would 
also account for the gradual mixing and entrainment over the wedge length, and thus 
predict the observed second-order circulation within the wedge, have not been 
developed to date. 

Comparison with available data (see Sargent & Jirka 1982 for a recent comparative 
study) shows that both density currents and density wedges are adequately predicted 
by their respective theories. Thus we can conclude that the two intrusion types are 
indeed governed by rather different mechanisms, as is already suggested by their 
shapes. Two questions arise at this point. First, what causes a given intrusion flow 
to result in either of the two flow patterns? As suggested by the solid-body analogy 
it should be the boundary-layer behaviour along the fluid interface and - especially 
important in the present case - in the ambient approach flow that controls the 
intrusion type. Of course, a point a departure from the strict solid-body analogy is 
the deformability - and, to a lesser degree, the miscibility - of the interface. The 
suggestion that the ambient-flow boundary layer affects the type of the intrusion is 
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certainly not new. This has been realized by earlier investigat,ors and, for example 
led Britter & Simpson to the development of their moving-belt device to generate 
a steady density current. What is missing, however, is a detailed linkage of the flow 
boundary-layer characteristics and the resulting intrusion type. 

This leads to the second question : if boundary-layer control methods are successful 
in fluid-solid interaction, can similar methods also be used to influence the shape of 
the intrusion? Note, that in either case (fluid-solid interaction or intrusion flow) a 
control method is defined herein as a small manipulation of the boundary-layer flow 
that greatly affects the overall flow. It is not suggested, however, that the same types 
and geometrical configurations as used on solid bodies will apply for intrusion flow 
control. Rather, as shown below, control methods for intrusion flows work by slightly 
influencing the ambient approach flow ahead of the intrusion, thereby resulting in 
major changes of the type of the drag and - through the pressure linkage - the shape 
of the intrusion. Again, Britter & Simpson’s moving belt clearly is such a control 
method but there may be other, and hopefully simpler, devices that could be 
systematically investigated. 

Control methods are not only of fundamental interest for the study of density 
currents in a steady-state experimental framework, but also have important 
engineering applications whenever the prevention of long-distance wedge-like 
intrusions is desired. 

In 52, a perturbation analysis of the ideal fluid flow around the forward stagnation 
point of a density current is used to evaluate the response of the interface to a 
rotational effect in the approach flow. The consequences on flow behaviour of the 
perturbation result are explored in $3. Then, several control methods are used 
experimentally to generate steady-state density currents. The results are compared 
to Benjamin’s theory, and to Britter & Simpson’s theory and experiments. Implica- 
tions for engineering design are discussed in the concluding section. 

2. Perturbation analysis of density-current shape 
An important aspect of the density current is its forward tip which forms a 

stagnation point S (see figure l a ) .  Benjamin (1968) used a bulk momentum equation 
and a Bernoulli equation for stagnation pressure at S to derive the governing equation 
for the idealized density current (with inviscid approach flow and neglecting 
entrainment in the head wave), 

in which U is the relative speed between ambient flow and density current 
g’ = (pz-pl )g/pl  is the buoyant acceleration, n = h / H ,  where h is the intrusion 
thickness and H the ambient depth. Another property is the 60” angle at the 
stagnation point between the interface and the horizontal as first deduced by von 
KBrmin (1940) for an inviscid ambient flow. 

The following perturbation analysis demonstrates the sensitivity of the flow to 
small deviations from the inviscid conditions. The flow details for the corner flow near 
the stagnation point S are shown in figure 2. The flow is assumed to consist of the 
inviscid base flow (stream function $& and a superposed small perturbation flow that 
is rotational. In a complex polar plane ( r ,  0) the base flow is given by 

$, = - A m  sin[m(@-n)] (2) 

7-2 
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S 

FIGURE 2. Stagnation corner flow with inviscid radial component q4,, and 
rotational component Eqr,. 

and its radial velocity distribution qor = ( l /r)  (&,h,/M). The total radial velocity 

Qr = Qr, + Bqrl 

= -Arm-lm c o s [ m ( 8 - 7 ~ ) ] + ~ B r ~ - ~  (3) 

in which A and B are flow constants to be chosen later and B is a small dimensionless 
perturbation parameter that  measures the magnitude of the rotational component 
relative to the inviscid one. The stream function $ for the combined flow is 

~=-Armsin[m(8-x) ]+sBrm $Y- K-- O+ K-- , [ ( 2 2  ( 3 1  (4) 

which satisfies the no-flux conditions along 0 = n, (n-nlrn). I n  (3) an arbitrary, but 
simple, velocity distribution linear in 8 for the rotational component qrl has been 
assumed. 

A Bernoulli equation applies along the fluid interface with local elevation 
2 = r sine,, 

Expanding the angle 0, = 8, +A8, where 0, is the angle under inviscid base flow and 
Ad the perturbation of angle of order B ,  ( 5 )  becomes 

q: = 2g'r sine,. ( 5 )  

q: = 2g'r sin8,+2g'rAO cosO,+O(~~).  (6) 

Another expression for q: along the interface is formed from (3), 

q: = A2mZr2(m-1) cos2 [m(B,-n)] 

- 2 A B r n ~ r ~ ( ~ - ' )  cos [m(B,-n)] 

Equating terms of zeroth order between (6) and (7)  with consistent dependence on 
r gives m = t and the base angle 8, = 60" which corresponds to von Karman's result. 
The first-order solution yields the change 

Hence, the following dependence is obtained : any velocity deficit in the ambient flow, 
B > 0, gives A8 < 0, and thus flattening of the head front. Any velocity excess, E > 0, 
gives A0 > 0, and thus steepening of the front. 
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The evaluation of the constants follows so that (8) can be used for quantitative 
purposes. The zeroth-order terms in (6) and (7) give A = 3i(f)g’k The magnitude of 
the corner flow is linked to the overall flow balance of the density current so that 
A = ( 3 f / F )  (2U)/(3hi) ,  where F is given by (1) .  Of course, the lengthscale of the 
stagnation region is given by the thickness scale h of the density current (see figure 
la ) .  Thus, the above value of A together with F = O(1) implies (see (6)) that the 
velocity scale at  that distance h is equal to the ambient approach velocity U as 
expected. On the other hand, if the scale of the viscous influence is 6, then the base 
velocity a t  distance S is U(S/h)t .  The perturbation velocity is taken as a small fraction 
sU(S/h); which yields from ( 3 )  the constant B = (3U)/(xh;) .  With these values, (8) 
becomes 

0, = $ - ~ ( 3 ; ) 2 F .  (9) 

As a numerical example, the effect of a thin boundary layer in the ambient flow 
may be approximated with 8 of the order of +0.1. (This order of magnitude for E 

is obtained if a turbulent boundary-layer profile is roughly matched with a linear 
velocity variation of equal momentum thickness with the allowance of a slip velocity 
a t  the wall). If this flow meets a shallow (n+O) density current, F = 2 by virtue 
of ( l ) ,  then (9) gives a flattening of the frontal interface by A0 X--21’. Two 
conclusions can be drawn from this. First, the shape of the head front is extremely 
sensitive to viscous anomalies in the flow relative to it. Secondly, the distortion effect 
is independent of the scale S of the viscous influence. Even very small scales will 
locally distort the interface. 

It is interesting to compare the above result for the distortion of the frontal angle, 
(9), to another perturbation approach presented recently by Rottman, Hunt & 
Mercer (1985). They assumed an imposed constant vorticity f in the corner flow and 
solved the governing equation for the stream function of the inviscid flow, 
V2$ = -5 = const., with appropriate interface conditions (similar to (6)). They 
obtained an equation for the frontal angle (in the present notation) 

0,(r) = 3c+3-f~ld / (g’ ) : ,  (10) 

which is valid for small r .  For g < 0 (equivalent to E > 0 in the present case) this 
indicates flattening of the frontal face ( r  > 0), while steepening is predicted for f > 0 
(equivalent to E < 0). These results are qualitatively similar to the present predictions 
as discussed above. 

Fundamentally different, however, is the behaviour right at the stagnation point, 
r+O. There (10) gives a fixed angle, 0,(0) = $, irrespective of the ambient shear, 
while (9) predicts a complete distortion of the front angle, even at the smallest scale. 
This difference seems to  be caused by the assumed vorticity distributions. While 
Rottman et al., have assumed f = const., the assumed rotational velocity distribution 
in the present case implies a vorticity 

f = - EBrm-2 { m2 [:Bp- ( IK -&) 8 + (R -:) +R] + 11.  

Equation 11 shows maximum vorticity at the flow boundaries, 0 = R, (X-n /m) ,  
minimum values in the flow interior, 0 = R - I K / ~ ~ ,  and a singularity a t  r = 0 for the 
base flow case m = 3 < 2. These properties appear entirely realistic for a viscous 
corner flow. In particular, the singularity at the stagnation point is an inherent 
feature of Falkner-Skan type boundary-layer flows (e.g. Batchelor 1967) whenever 
0, < t (or m < 2)  so that a diffuse thickening of the boundary layer starts at the 
stagnation point. Even though the approach flow in the present case is somewhat 
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different from the irrotational approach flow of the Falkner-Skan solutions i t  is 
nevertheless reasonable to  expect a gradual boundary-layer growth in the accelerat- 
ing flow along the density interface and hence a high localized vorticity at the leading 
edge of the interface, viz. the stagnation point. An exact solution of the viscous corner 
flow along a density front is needed. The two preliminary estimates for the front 
behaviour, (9) versus (lo),  are discussed further below in the light of experimental 
evidence. 

3. Consequences for density intrusion 
The foregoing theoretical results can be used to  explain under which circumstances 

a particular density intrusion will occur in the form of a density current and under 
which in the form of a density wedge. 

Any momentum deficit relative to the inviscid case in the ambient flow approaching 
the stagnation point causes local flattening in the head shape. This flattening, 
sensitive as i t  is, causes in turn even more viscous influence as a boundary layer 
between ambient and density flow develops over the flattened portion. Thus, a 
positive feedback occurs and the intrusion flow rapidly evolves into a wedge in which 
interfacial shear takes over as the balancing force. In  most practical instances the 
momentum deficit is caused by a no-slip condition imposed on the ambient flow. 
Figure 3 (a)  shows two such examples : a bottom intrusion in an  ambient flow with 
a boundary layer and a surface intrusion with contamination effects. The steady-state 
bottom wedge is, of course, the well-observed end product of an intrusion in riverine 
and estuarine applications. I n  our experiments, too, any bottom density current that 
was set up initially in accordance with Benjamin's force balance, ( l ) ,  degenerated 
rapidly and consistently into a bottom wedge. This was true even for cases in which 
the current thickness h was much larger than the scale of the viscous influence, as 
measured by the momentum thickness of the ambient flow, so that Benjamin's bulk 
analysis might have been expected to  hold to  a first approximation. Also, in all of 
these cases, the front angle 8, at the stagnation point showed a pronounced drop 
below 60" in accordance with (9) and in contrast to (10). 

The breakdown of surface intrusions into wedges illuminates even better the scale 
independence of the viscous effects. I n  our experiments using a high-Reynolds- 
number flow and a wide flume (see details below) we took great care in removing any 
contamination (dust, floating scum) from the recirculating water flow. We adjusted 
the intrusion flow according to Benjamin's force balance and, indeed, were able to  
observe a density current for a short period. However, as some surface contamination, 
which is inevitably present in the flume, accumulated in the convergence zone, a local 
disturbance and small wedge formed at the stagnation point usually within a minute 
from the start of the experiment. This small wedge pushed the contamination zone 
ahead of it, growing in horizontal extent until the degradation into a stable wedge 
was complete. Detailed flow inspection, observing injected dye and neutrally buoyant 
particles, indicated that this contamination effect was the primary mechanism in 
causing the breakdown of the density current. The actual boundary-layer growth at 
the interface and viscous effects of the sidewalls of the wide flume seemed to be less 
important. 

Any momentum excess relative to the inviscid case in the ambient flow approaching 
the stagnation point causes a stable, albeit somewhat deformed, head shape. The first 
example in figure 3 ( b )  is the classical case of the unsteady density current advancing 
at a constant speed over a solid bottom. (In an actual experiment an unsteady density 
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FIQIJRE 3. Effect of ambient flow and of boundary-layer control on the head shape of density 
currents. (a)  Unstable density currents evolving into wedges, ( b )  stable density currents in a uniform 
channel, (c) stable density currents with local channel non-uniformities (control methods). 

current is generated by starting at  t = 0, and then maintaining, a constant release 
of buoyant fluid at a fixed position xo. The entire flow at any time t > 0 is then made 
up of a density current as the leading element followed by a wedge-like flow with a 
gradual thickness increase all the way back to xo. As time advances, a larger fraction 
of the buoyant force prescribed at xo is balanced by interfacial shear along the 
wedge-like flow. Consequently, both the speed of advance and the size h (see figure 
l a )  of the density current diminish over time (e.g. see Sargent t Jirka 1982). The 
time change is small, however, and the local flow dynamics at the density-current 
head can be considered as quasi-steady, so that both the steady-state fundamental 
force balances (e.g. (1)) and the perturbation results should hold). As the ambient 
flow (relative to an observer moving with the density current) approaches the head 
the no-slip condition a t  the solid bottom prevents stagnation as in the inviscid case. 
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Rather, the excess momentum causes such extreme steepening of the front that 
ambient fluid is in effect swept under the advancing density current which then 
exhibits the typical elevated nose. Once again, this feature is consistent with the 
steepening effect predicted by (9), while it does not agree with Rottman et aZ.’s (1985) 
prediction, (lo),  as B(0) greatly exceeds in (see also the photographs of Simpson & 
Britter 1980). The ambient fluid trapped under the intrusion nose rises through 
convective instabilities causing the typical lobe-and-cleft structure when viewed 
from above (see Simpson 1982). 

A momentum excess is also provided by the moving-belt dcvicc of Britter & 
Simpson (1978, see figure 3 b )  as the no-slip condition at the belt carries ambient- 
momentum fluid toward the tip of the density current. Simpson & Britter did not 
report any local steepening of the current shape. However, this effect can be very 
localized and in our experience detailed observations are very difficult. Furthermore, 
the downward motion of the belt may have inadvertently removed some of the 
boundary-layer fluid through suction, an effect similar to  the suction method 
described below. 

I n  a later study (Simpson & Britter 1980) the moving-belt device was used 
differently from the configuration sketched in figure 3 ( b ) .  The density current was 
arrested directly over the moving belt, which was operated under three speed 
conditions: (i) a belt speed equal to the density-current speed U (this corresponds 
exactly to the advancing current of figure 3 ( b )  as discussed above); (i i)  a belt speed 
less than U ;  and (iii) a belt speed greater than U .  Of course, all three cases represent 
a momentum excess in the ambient shear flow, but with varying magnitude. The 
effect is weakest for case (ii), which hence causes the least front steepening and 
smallest lifting of the nose, and is strongest for case (iii) as is clearly shown in Simpson 
& Britter’s photographs (also given in Rottman et al. 1985). 

4. Experiments on control methods for density intrusions 
The discussion in the preceeding section applied to a uniform ambient-flow 

geometry. If local non-uniformities of sufficient magnitude are introduced into the 
ambient-flow channel, then additional possibilities arise for arresting intrusions in 
form of stable density currents. These local non-uniformities are referred to as control 
methods. Examples are sketched in figure 3 (c). The general role of any of these control 
methods is to counteract or eliminate the velocity deficit in the ambient approach 
flow. This is achieved by forcing a localized high-velocity region or a flow separation, 
or through removal of the low-velocity fluid. 

Three specific methods of influencing the boundary layer of the ambient shear flow 
were studied in exploratory experiments (see figure 3 c )  : a step increase in elevation 
(first investigated by Sargent & Jirka 1982); a small barrier; and suction of the 
boundary layer. Similar options can be employed for density currents at the free 
surface. 

These control methods were investigated in a recirculating stratified-flow flume 
(7.3 m long, 46 cm wide, 30 cm deep). The flume ends in a large stilling basin from 
which the ambient flow is withdrawn with a selective withdrawal device and 
recirculated back to the upstream end. The buoyant intrusion flow is supplied via 
a discharge device that is inserted at the downstream flume end. The device can be 
set either at the bottom or a t  the water surface with a variable opening height. The 
boundary-layer control devices were installed about 4-5 water depths upstream from 
the flume end. 
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Bottom density currents were generated through steady salt water releases, while 
heated water was used for surface density currents. In  either case the procedure was 
as follows: the mean ambient velocity U and water depth H were set. Then the 
intrusion fluid with buoyant acceleration g’ was released through the discharge device 
that was set to an opening height roughly corresponding to Benjamin’s inviscid 
solution, (1).  The rate of buoyant-fluid release was increased in gradual steps until 
a stable equilibrium density-current shape was established. A t  this stage the 
density-current tip was located at any of the boundary-layer control devices and the 
buoyant make-up flow was lost through mixing in the wake zone behind the head 
wave. The equilibrium situation was clearly distinguishable. Any further increase in 
supply flow (or decrease in U or increase in 9’) would result in an upstream advance 
of the density current beyond the control devices as the density-current force balance 
was no longer maintained. Vice versa, a decrease in the supply flow (or increase in 
U or decrease in g’) resulted in a stretching and flattening of the density-current head 
with approach to a density-wedge-like appearance as a larger fraction of the intrusion 
force was balanced by interfacial shear. 

At equilibrium, the following observations were made : the buoyant-layer thickness 
immediately behind the head wave was obtained from a traversing conductivity- 
probe record or alternatively from a shadowgraph picture using the caustic zone of 
maximum light intensity. The buoyant-discharge flow rate q was read from a 
rotameter, making sure that this flow did indeed enter the current head and did not 
short circuit directly into the ambient flow after release through the discharge device. 
These observations, together with the values of U ,  H and g’ were then used for 
comparison with the appropriate theories and with Britter 6 Simpson’s past 
experiments. The ambient velocity ranged between 2.5 and 7 cm/s, the buoyancy 
between 1.6 and 8 cm/s8, the intrusion-layer thickness between 1 and 3 cm with an 
ambient water depth of about 15 cm, Thus, the ambient-flow Reynolds number 
U H / v ,  where v is the kinematic viscosity, was between 4000 and 13000 indicating 
turbulent approach flow. The layer Reynolds number Uh/v was smaller by the factor 
n = h / H ,  but well above 500, the value below which Simpson (1982) reports 
increasing viscous influences. Further experimental details are given in Sargent & 
Jirka (1982). 

Shadowgraphs for three different boundary-layer control devices are shown in 
figure 4. Figure 4 (a) shows a step-like displacement device of 2.2 cm thickness at the 
bottom of an ambient approach flow of 17.6 cm so that the water depth over the 
device is 15.4 cm. The mean velocity profile upstream of the device is shown in figure 
5.  It closely resembles a +-power layer for which the displacement thickness is one 
eighth of the flow depth, 17.6/8 = 2.2 cm. The intended role of the displacement 
device with approximately that thickness is then to contract the flow locally and 
thereby eliminate the boundary-layer momentum deficit. The step device was 
rounded with a 1 cm radius and no flow separation was observed. Limited velocity 
measurements in the absence of a density intrusion showed the essential elimination 
of the ambient boundary layer at the step shoulder at which a new boundary layer 
starts to develop. More extensive measurements approximately one-half of a water 
depth further downstream show a largely uniform profile with a thin boundary layer 
(figure 5 ) .  The stable density current that intrudes into this ambient flow up to the 
step shoulder (figure 4a) has a structure and appearance, including the formation of 
breaking Kelvin-Helmholtz waves, quite similar to Britter & Simpson’s (1978) 
shadowgraph observations with their moving-belt device. Further quantitative data 
are discussed below. 
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FIGURE 4 ( a , b ) .  For caption see facing page. 
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FIQ~JRE 4. Shadowgraphs of stationary density currents produced by various control methods. 
(a) Step displacement device at the bottom of the channel, U=4.6cm/s,  H = 15.4cm, 
g‘ = 3.72 cm/sz, h = 1.05 cm, Ah = 2.2 cm; (b) barrier device at the bottom, U = 4.6 cm/s, 
H = 15.4 cm, g’ = 3.72 cm/s2, h = 2.3 cm, Ah = 2.2 cm; (c) barrier device at the surface, 
U = 5.1 cm/s, H = 15.75 cm, g’ = 3.14 cm/s2, h, = 1.2 cm, Ah = 1.85 cm; (d )  suction a t  the surface, 
U = 4.6 cm/s, H = 17.5 em, g’ = 7.64 cm/sz, h = 3.2 cm, Aq = 4.3 cm2/s. Bar length is 2 cm. 
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FIGURE 5. Modification of the channel-flow velocity profile due t o  a step with height equal to 

the displacement thickness. 

The effect of a small barrier (2.2 cm in height) located a t  the bottom, or of a similar 
one (1.7 cm in height) located at the surface, are shown in figure 4 ( b  and c) 
respectively. The surface-barrier height was chosen from velocity measurements in 
the underflow under a surface contamination film that formed once an obstruction 
was put across the flow surface. Under typical experimental conditions the upstream 
film length grew a t  a rate of 0.5-1 m per 10 minutes. The flow structure for both 
barrier cases is qualitatively similar to that for the step displacement device, even 
though the flow layer corresponding to  the barrier height is now occupied by buoyant 
fluid. (Note that a small amount of buoyant fluid is visible upstream of the barrier. 
This occurred due to  the ‘leakage’ in the sidewall boundary layers of the flume, but 
was dynamically insignificant and did not degrade the long-term stability of the 

Lastly, figure 4 ( d )  displays the effect of a suction device that is placed across the 
free surface (1 mm immersion, 5 mm slot width). The device withdraws a small 
amount of flow a t  a rate corresponding to 5 yo of the ambient discharge. The suction 
removes primarily the ambient-flow layer near the free surface along with any viscous 
contamination effects. As shown by buoyancy measurements, however, some buoyant 

flow). 
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FIGURE 6. Comparison of steady-state density-current data with flow-force theories of Benjamin 
(1968) and Britter t Simpson (1978) neglecting second-order effects. Data: 0,  step device (Sargent 
t Jirka, 1982); 0,  step device; 0, barrier device; 0, suction control. 

flow (typically 2 5 4 0  yo of the total suction flow) is also sucked off in the process. The 
suction method appears to be the most effective method for maintaining steady 
density currents that behave like the ideal inviscid model for the current front. 

In figure 6 the experimental data are compared with the flow-force theory of 
Benjamin, ( i ) ,  with the expanded flow-force theory of Britter & Simpson that 
includes mixing in the head-wake zone through a dependence on the unspecified 
parameter Q = qg ' /V  (or alternatively a shear-layer Richardson number 
R, = g'h , /AV,  where AU and h, are the velocity difference and height of the wake 
zone with R, = 0.35 as a best fit equilibrium value in agreement with Thorpe's (1973) 
work on billowing and with Britter & Simpson's moving-belt experiments. In these 
comparisons U is taken as the depth-averaged velocity at  the location of either device 
(step, barrier or suction) and h is the layer thickness relative to the elevation of either 
device. 

Using Benjamin's model as the first-order prediction of density-current dynamics, 
the data in figure 6 indicate that the boundary-control manipulations induce other 
second-order effects in addition to head mixing already considered by Britter & 
Simpson. It is useful to analyse these second-order effects and define the magnitude 
of an effective mean velocity U,,, that controls the density-current force balance. In 
Appendix A an analysis is given for the ambient flow over the step device (or barrier), 
which shows that U,,, is smaller than the mean velocity U over the device. The flow 
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FIGURE 7. Comparison of steady-state density-current data with flow-force theories after accounting 
for second-order effects produced by the control methods. Symbols as on figure 6. 
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Head entrainment rates as a function of layer thickness. Symbols as on figure 6. FIGURE 8. 
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FIGURE 9. Head shape (x*, z * )  normalized with total head height h, for different control methods, 
-, Britter & Simpson (1978), moving belt; ----, Sargent & Jirka (1982), step device; other 
symbols as on figure 6. 

stagnation pressure at the device shoulder is reduced since the flow originates in the 
upstream boundary layer. On the other hand, the suction-flow analysis in Appendix 
B gives U,,, larger than U as the suction pushes the stagnation point away from the 
boundary elevation. This increased potential energy causes a larger intrusion pressure 
to be balanced by the available kinetic energy of the flow. The effective velocity 
changes are of order f 20 yo for the present experimental conditions and are presented 
in figure 7 which shows a satisfactory agreement with the data of Britter & Simpson. 

A summary of normalized entrainment rates Q = qg ' /V  as a function of layer 
thickness n is given in figure 8. With the exception of the bulk of the step-displacement 
experiments, which show somewhat lower rates, the various data are in reasonable 
agreement with Simpson & Britter's data and indicate increasing entrainment with 
increasing current thickness. Similarly, the normalized head shape for the different 
experimental configurations (figure 9) shows little variability. I n  any case - except 
possibly the suction device (see also figure 4 4  - the slope of the foremost point is 
somewhat less than the theoretical 60" slope. Exact observations are difficult, 
however, owing to the small scale of the flow and to lateral and temporal variability. 

5. Concluding remarks 
Starting with a perturbation analysis of an inviscid approach flow, we have shown 

that the observed bifurcation of a density intrusion into either a density current or 
a density wedge is governed by momentum changes in the ambient flow relative to 
the inviscid case. Any momentum deficit - typically due to boundary-layer formation 
in the ambient flow - results in the eventual formation of a density wedge in a uniform 
channel geometry. On the other hand, a momentum surplus is needed in a uniform 
channel to support in a steady-state a stable density current. Furthermore, small 
non-uniformities installed in the channel - referred to as control methods - also 
assure stable density currents by controlling the small-scale viscous effects of the 
ambient flow. In  analogy to fluid-solid interaction, the density wedge is governed 
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by interfacial (skin-friction) drag, while pressure drag dominantes the density-current 
dynamics. 

Several exploratory experiments have shown that a variety of boundary-layer 
control methods (steps, barriers or suction) can be used to  prevent wedge intrusions 
over long distances in ambient-flow situations in which a boundary layer exists. In  
all of these methods a small local manipulation - of the order of 10 % - of a primary 
flow variable (e.g. ambient depth or ambient discharge) is employed in order to 
stabilize a density current a t  a fixed location. If proper account is taken of the 
second-order dynamic effects of these manipulations, then the observed density 
current forms and force balances are all similar to  each other and in agreement with 
the fundamental theory of Benjamin (1968) and its amplification, including head 
mixing, by Britter & Simpson (1978). 

Apart from their experimental convenience for the study of steady-state density 
currents, the proposed boundary-layer control methods may have a great potential 
for engineering design and environmental protection. The control methods, notably 
the small barrier and the suction, or combinations and modifications thereof, would 
be effective for the prevention of long-distance intrusions into ambient shear flows 
of undersirable or noxious fluids. Applications may include ventilation of mines, air 
quality control in buildings, containment of oil pollution or gas spills, prevention of 
salt water (often also sediment laden) intrusion into coastal rivers or waterways and 
design of thermal effluent discharges, cooling ponds and solar ponds. 

Finally, we want to  emphasize that the present analysis and experiments were 
limited to a two-dimensional framework, with one horizontal (streamwise) direction 
and the vertical direction aligned with gravity. As mentioned, in a wide channel the 
effect of the lateral wall boundary layer appears to  be negligible. More complex 
interaction possibilities exist, however, when oblique or curved intrusion fronts are 
considered with variation in the second horizontal (spanwise) direction. For example, 
the front produced by a stationary radial buoyant source discharging at the surface 
of a crossflowing water body was found (Jirka 1980; Jones & Jirka 1986) to be of 
the density-current type. All surface contamination is swept along the curved front. 
It does not accumulate locally and, therefore, does not cause the gradual breakdown 
to a density wedge as in the two-dimensional case. 

This research was supported in part by the US National Science Foundation, Grant 
No. CME-8012682. We would like t o  thank the referees for several suggestions- 
including the reference to the recent work of Rottman et al. (1985) - that  substantially 
improved the manuscript. 

Appendix A. Flow over a displacement step (or barrier) 
We first consider the ambient flow over a step device in the absence of a density 

current (see figure 10). The device height Ah is approximately equal to the 
displacement thickness in the ambient shear flow. Hence, the velocity profile U at 
the top of the rounded step is approximately uniform, as validated by the experi- 
ments. A global energy equation between a section 1 upstream of the device and a 
section 2 just at the step yields, neglecting energy losses over this short distance, 

in which V is the average velocity upstream, 8, the change (drop) in surface profile 
over the device and H the water depth in section 2. a, and a2 are energy correction 
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FIGURE 10. Ambient free-surface flow with solid floor boundary layer over step 
displacement device. 

factors; henceforth, a1 will be taken as 1.045 corresponding to the one-seventh law 
in the fully established ambient flow and a, x 1, neglecting the thin boundary layer 
that develops. Hence, 

(A 2) 
1 6 --(V-a1v2). 

- 29 

Furthermore, a local energy equation for a streamline that passes close to the top 
of S at the shoulder of the device and that originates within the boundary layer of 
the ambient flow is written 

in which p ,  is the total stagnation pressure at  S and ad is the kinetic energy factor 
for the displaced boundary layer, defined by 

Ah 
aA P A h  = lo u3 dz. 

u ( z )  is the velocity profile, characterized by the one-seventh law, 

For our typical experimental conditions ( H  = 15.4 cm, Ah = 2.2 cm) aA = 0.44. The 
continuity equation, V = U H / ( H + A h )  to first order, together with (A 2) and (A 3) 
nives 

Once a dense fluid is introduced, it is the stagnation pressure p s  that causes arresting 
of the current a t  the step shoulder S. Hence, the mean velocity U, depth H and 
Stagnation pressure p ,  are the parameters governing the force balance with the 
density current (buoyancy g’ and thickness h).  In the simplest case of zero head 
entrainment this balance is given by Benjamin’s (1968) equations, a momentum 
equation (with the usual Boussinesq simplifications) 

- $’h2 + gSH, 
Hh p-= 

H - h  
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and a Bernoulli equation for the hydrostatic conditions in the dense flow 
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Ps = PIg(H-- - - - - )+p ,gh,  (A 9) 

in which IS is the surface drawdown over the density current. (Note that Britter & 
Simpson’s (1978) model with head entrainment could also have been introduced a t  
this point at the expense of additional complexity.) 

Combining (A 7) ,  (A 8) and (A 9) gives 

- ( 2 - 4  ( l-n) - - 
u2 

2n+(l-n) [ l+- ;;;;I’ 
with n = h / H  and A = A h / H .  Equation (A 10) can now be compared to the classical 
Benjamin equation (see (l)), written as 

in which Ueff denotes the ideal inviscid nature of the uniform approach flow. 
Comparing (A 10) and (A 11) gives 

[Jeff = U{-+- 2n l -n  [ 1 +- aA-allr 
l + n  l + n  ( 1 + 4 ) 2  . 

For the present experiments the square-root factor is of the order of 0.80, less than 
unity. Thus, the effective velocity that actually arrests the density current is lower 
than the mean ambient velocity over the device. This is due to the low energy content 
(ad < 1) of the flow on the upstream boundary layer that  gets mixed and squeezed 
when flowing over the step device. 

Identical arguments would pertain to the use of a rounded barrier of height Ah 
instead of a step device: the conditions a t  the top of the barrier would be similar to 
those a t  section 2 in figure 10. The thickness h of the density current is measured 
relative to the top of the barrier, however. 

Appendix B. Suction flow 
We analyse the simplest case of a suction flow, namely one with an inviscid 

approach flow and neglecting head entrainment (see figure 11). The real fluid effects 
could readily be introduced into the basic model below by combining it with the 
analyses of Appendix A and Britter & Simpson. 

The bulk momentum equation between sections 1 and 2 is 

p1 q ( H - h - S ) - p ,  V ( H - - 1 )  = ~ , g H 2 - L g , g ( H - 6 ) 2 - ~ ( p 2 - p l ) g h 2 ,  (B 1) 

where I is the withdrawal-layer thickness in the ambient flow. In  (B 1) the momentum 
fluxes due the withdrawal flows Aq, and Aq2 arc assumed to be balanced by pressure 
forces on the suction slot. Continuity equations are 

U H =  U,(H-h-b’ )+Aq, ,  (B 2) 

U1= Aq,, (B 3) 

(B 4) Aq = Aq, + Aq,. 
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t & 
FIGURE 11. Interaction of inviscid ambient flow, density current and suction flow. 

Bernoulli equations in each fluid yield the stagnation pressure 

2 

p 1 g ( H - h - 4 + i p 2 ( + )  +P29h = PS+P29S. 

A simple estimate for the elevation s of the stagnation point S is obtained as follows. 
An inner approximation for the localized withdrawal flow through the narrow (line) 
slot is a radial velocity distribution v, = Aq/(nr), where r is the radial distance, which 
is unaffected by the density field (reference density po) .  Hence, the local pressure 
deviation p ,  from the externally imposed stagnation pressure is given by 
p ,  = i povk ,  which satisfies p,+O as v,+O outside the zone of withdrawal influence 
r+cO. As an outer approximation within the buoyancy field g ’ ,  that  pressure 
disturbance causes an uplift z above the bottom of the equipotential surfaces 
z = - p J ( p o g ’ ) .  I n  particular, for the dividing streamline on which S is located a t  
a distance r along the radius 8 = nAq,/Aq the uplift is given by s = vz/2g’ in which 
us is the inner velocity a t  distance rs.  Using the geometric relation s = rs sine, and 
the above relationships the uplift elevation for the stagnation point becomes 

Given U ,  H ,  p l ,  p, ,  g and Aq, the seven equations above yield the seven unknowns 
h, U, ,  6, p s ,  s, Aql and 1, provided that the flow rate Aq, is also externally imposed. 
If the latter provision is not met, then some additional critical relationship is needed 
that controls the flow distribution into Aql and Aq, subject to the total suction flow 
Aq. Alternatively, we can assume that the dividing streamline is still governed by 
its first-order balanoc with an angle 0 = in so that the flow is distributed as Aql x $Aq 
and Aq, x f A q .  Indeed, this simplification agrees with our observations on the 
buoyancy concentration in the suction flow (see $4). The solution of the equation 
system is then 

(B 8) 
( I - n)  [ 2( 1 - s* ) - n] 

- 
U2 _-  
g’h 2 ( 1 - ~ * n ) ( n - - * n ) + ( i - n ) -  
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in which n = h/H,  q* = Aq/(Uh) and 
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If this solution is compared to Benjamin's reference solution (with suction) as was 
done in Appendix A, (A 1 l ) ,  the effective velocity that causes stagnation is related 
to the mean velocity by 

( 2 - n )  2 4 1  -&*) ( 1  -&a*.) + ( 1  -n) 

ue,, = u (l+n)[2(1-s")-n] 

For our typical run conditions (B 10) indicates that Ue,,/ U x 1.10. Typical predicted 
stagnation elevations for the experiments are 0.5 cm in agreement with dye flow 
visualization. Thus, the suction flow affects the dynamic balance through lift-up of 
the stagnation point, which acts like a barrier effect so that a larger layer depth h 
can be supported with a given approach velocity U .  Qualitatively, this lift-up effect 
is similar to the elevated-nose effect for a density current advancing over a solid 
bottom (Simpson & Britter 1979). 
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